COT 6405 Introduction to Theory of Algorithms

Final exam review

About the final exam

- The final will cover everything we have learned so far.
- Closed books, closed computers, and closed notes.
- A front-side cheat sheet is allowed
- The final grades will be curved

Question type

- Possible types of questions:
- proofs
- General questions and answer
- Problems/computational questions
- The content covered by midterms I and II takes 60\%
- The content we studied after midterm II takes 40\%

Quick summary of previous content

- How to solve the recurrences
- Substitution method
- Tree method
- Master theorem
- Comparison based sorting algorithms
- Merge sort, quick sort, and Heap sort
- Linear time sorting algorithms
- Counting sort, Bucket sort, and Radix sort

Quick summary (cont'd)

- Basic heap operations:
- Build-Max-Heap, Max-Heapify
- Order statistics
- How to find the k-th largest element : BigFive algorithm
- Hash tables
- The definition and how it works
- Hash function h: Mapping from Universe U to the slots of a hash table T

Binary Search Trees

- Binary Search Trees (BSTs) are an important data structure for dynamic sets
- In addition to satellite data, nodes have:
- key: an identifying field inducing a total ordering
- left: pointer to a left child (may be NULL)
- right: pointer to a right child (may be NULL)
- p: pointer to a parent node (NULL for root)

Node implementation

Binary Search Trees

- BST property: Let x be a node in a binary search tree. If y is a node in the left subtree of x, then y.key < x.key. If y is a node in the right subtree of x, then y.key > x.key. Different BSTs can be constructed to represent the same set of data

Average case O(lgn)

Walk on BST

- A: prints elements in sorted (increasing) order InOrderTreeWalk(x)

InOrderTreeWalk (x.left); print(x) ; InOrderTreeWalk (x.right);

- This is called an inorder tree walk
- Preorder tree walk: print root, then left, then right
- Postorder tree walk: print left, then right, then root

Operations on BSTs: Search

- Given a key and a pointer to a node, returns an element with that key or NULL:
TreeSearch (x, k)

$$
\begin{aligned}
& \text { if }(x=\text { NULL or } k=x . k e y) \\
& \text { return } x \text {; } \\
& \text { if (} k=x . k e y)
\end{aligned}
$$

return TreeSearch (x.left, k);
else
return TreeSearch(x.right, k);

Operations on BSTs: Search

- Here's another function that does the same Iterative-Tree-Search (x, k)

$$
\begin{aligned}
& \text { while (x ! }=\text { NULL and } k \text { ! }=x . k e y) \\
& \text { if (k }<x . k e y \text {) } \\
& \quad x=x . l e f t ; \\
& \text { else }
\end{aligned}
$$

x = x.right;
return x;

BST Operations: Minimum

- How can we implement a Minimum() query?

TREE_MINIMUM(x)
while x.lef <> NIL

$$
x=x . \text { left }
$$

Return x

- What is the running time?
- Minimum \rightarrow Find the leftmost node in tree
- Maximum \rightarrow find the rightmost node in the tree

BST Operations: Successor

- Successor of x : the smallest key greater than key[x].
- What is the successor of node 3 ? Node 15 ? Node 13 ?
- What are the general rules for finding the successor of node x? (hint: two cases)

BST Operations: Successor

- Two cases:
$-x$ has a right subtree: its successor is minimum node in right subtree
$-x$ has no right subtree: x must be on the left sub tree of the successor such that $x<=$ successor. So the successor is the first ancestor of x whose left child is an ancestor of x (or x)
- Intuition: As long as you move to the left up the tree, you're visiting smaller nodes.

BST Operations: predecessor

- Two cases:
$-x$ has a left subtree: its predecessor is maximum node in left subtree
$-x$ has no left subtree: x must be on the right sub tree of the predecessor such that $x>=$ predecessor. So the predecessor is the first ancestor of x whose right child is an ancestor of x (or x)

Operations of BSTs: Insert

- Adds an element x to the tree
$-\rightarrow$ the binary search tree property continues to hold
- The basic algorithm
- Like the search procedure above
- Use a "trailing pointer" to keep track of where you came from
- like inserting into singly linked list

BST Operations: Delete

- Several cases:
$-x$ has no children:
- Removex
- Set parent's link NULL
$-x$ has one child:
- Replace x with its child
- Set the child's link NULL
$-x$ has two children:

Example: delete K or H or B

- replace x with its successor
- Perform case 0 or 1 to delete it

Elementary Graph Algorithms

- How to represent a graph?
- Adjacency lists
- Adjacency matrix
- How to search a graph?
- Breadth-first search
- Depth-first search

Graphs: Adjacency Matrix

- Example:

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

Graphs: Adjacency List

- Undirected

(a)

(b)
- Directed Graph

(a)

(b)

Graphs: Adjacency List

- How much storage is required?
- The degree of a vertex $v=$ \# incident edges
- Two edges are called incident, if they share a vertex
- Directed graphs have in-degree, out-degree
- For directed graphs, \# of items in adjacency lists is
Σ out-degree $(v)=|E|$
takes $\Theta(V+E)$ storage
- For undirected graphs, \# items in adjacency lists is
Σ degree(v) $=2|E|$
also $\Theta(V+E)$ storage
- So: Adjacency lists take $\mathrm{O}(\mathrm{V}+\mathrm{E})$ storage

Breadth-First Search (BFS)

- "Explore" a graph, turning it into a tree
- One vertex at a time
- Expand frontier of explored vertices across the breadth of the frontier
- Builds a tree over the graph
- Pick a source vertex to be the root
- Find ("discover") its children, then their children, etc.

Breadth-First Search

```
BFS(G, s) {
    initialize vertices;
    Q = {s};
    while (Q not empty) {
    u = Dequeue(Q);
    for each v \in G.adj[u] {
        if (v.color == WHITE)
            v.color = GREY;
            v.d = u.d + 1;
            v.p = u;
            Enqueue (Q, v) ;
    }
    u.color = BLACK;
    }
}
```


Time analysis

- The total running time of BFS is $O(V+E)$
- Proof:
- Each vertex is dequeued at most once. Thus, total time devoted to queue operations is $O(V)$.
- For each vertex, the corresponding adjacency list is scanned at most once. Since the sum of the lengths of all the adjacency lists is $\Theta(E)$, the total time spent in scanning adjacency lists is $O(E)$.
- Thus, the total running time is $\mathrm{O}(\mathrm{V}+\mathrm{E})$

Breadth-First Search: Properties

- BFS calculates the shortest-path distance to the source node
- Shortest-path distance $\delta(\mathrm{s}, \mathrm{v})=$ minimum number of edges from s to v, or ∞ if v not reachable from s
- BFS builds breadth-first tree, in which paths to root represent shortest paths in G
- Thus, we can use BFS to calculate a shortest path from one vertex to another in $\mathrm{O}(\mathrm{V}+\mathrm{E})$ time

Depth-First Search

- Depth-first search is another strategy for exploring a graph
- Explore "deeper" in the graph whenever possible
- Edges are explored out of the most recently discovered vertex v that still has unexplored edges
- Timestamp to help us remember who is "new"
- When all of v's edges have been explored, backtrack to the vertex from which v was discovered

Depth-First Search: The Code

DFS_Visit(G, u)
\{
time $=$ time +1
u.d $=$ time
u.color $=$ GREY
for each $\mathrm{v} \in$ G.Adj[u]
\{
if (v.color $==$ WHITE)
$\mathrm{v} . \pi=\mathrm{u}$
DFS_Visit(G, v)
$\}$
u.color $=$ BLACK
time $=$ time +1
u.f $=$ time

DFS: running time (cont'd)

- How many times will DFS_Visit() actually be called?
- The loops on lines 1-3 and lines 5-7 of DFS take time $\Theta(\mathrm{V})$, exclusive of the time to execute the calls to DFS-VISIT.
- DFS-VISIT is called exactly once for each vertex v
- During an execution of DFS-VISIT(v), the loop on lines $4-7$ is executed $|\operatorname{Adj}[v]|$ times.
$-\sum_{v \in V}|\operatorname{Adj}[v]|=\Theta(E)$
- Total running time is $\Theta(V+E)$

DFS: Different Types of edges

- DFS introduces an important distinction among edges in the original graph:
- Tree edge: encounter new vertex
- Back edge: from a descendent to an ancestor
- Forward edge: from an ancestor to a descendent
- Cross edge: between a tree or subtrees
- Note: tree \& back edges are important
- most algorithms don’t distinguish forward \& cross

Minimum Spanning Tree

- Problem:
- given a connected, undirected, weighted graph

$$
\mathrm{G}=(\mathrm{V}, \mathrm{E})
$$

- find a spanning tree using edges that connects all nodes with a minimal total weight $w(T)=\operatorname{sum}(w[u, v])$
- $w[u, v]$ is the weight of edge (u, v)
- Objectives: we will learn
- Generic MST
- Kruskal's algorithm
- Prim's algorithm

Growing a minimum spanning tree

- Building up the solution
- We will build a set A of edges
- Initially, A has no edges.
- As we add edges to A, maintain a loop invariant
- Loop invariant: A is a subset of some MST
- Add only edges that maintain the invariant
- Definition: If A is a subset of some MST, an edge (u, v) is safe for A, if and only if $A \cup\{(u, v)\}$ is also a subset of some MST
- So we will add only safe edges

Generic MST algorithm

GENERIC-MST(G,w)
$A=\emptyset$
while A is not a spanning tree find an edge (u, v) that is safe for A $A=A \cup\{(u, v)\}$
return A

How do we find safe edges?

- Let edge set A be a subset of some MST
- $(S, V-S)$ be a cut that respects edge set A
- No edges in A crosses the cut
- (u, v) be a light edge crossing cut ($S, V-S$).
- Then, (u, v) is safe for A.

MST: optimal substructure

- MSTs satisfy the optimal substructure property: an optimal tree is composed of optimal subtrees
- Let T be an MST of G with an edge (u, v) in the middle
- Removing (u, v) partitions T into two trees T_{1} and T_{2}
- Claim: T_{1} is an MST of $G_{1}=\left(V_{1}, E_{1}\right)$, and T_{2} is an MST of $G_{2}=$ $\left(V_{2}, E_{2}\right)$

Kruskal's algorithm

- Starts with each vertex being its own component
- Repeatedly merges two components into one by choosing the light edge that connects them
- Scans the set of edges in monotonically increasing order by weight
- Uses a disjoint-set data structure to determine whether an edge connects vertices in different components.

Disjoint Sets Data Structure

- A disjoint-set is a collection $C=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ of distinct dynamic sets
- Each set is identified by a member of the set, called representative.
- Disjoint set operations:
- MAKE-SET(x): create a new set with only x
- assume x is not already in some other set.
- UNION(x, y): combine the two sets containing x and y into one new set.
- A new representative is selected.
- FIND-SET(x): return the representative of the set containing x.

Kruskal's Algorithm

Kruskal (G, w)
\{
$\mathrm{A}=\varnothing$;
for each $v \in G . V$
Make-Set(v);
sort G.E by non-decreasing order by weight w
for each (u,v) \in G.E (in sorted order)
if FindSet(u) \neq FindSet (v)

$$
A=A U\{\{u, v\}\} ;
$$

Union (u, v) ;

Kruskal's Algorithm: Running Time

- Initialize A: O(1)
- First for loop: |V| MAKE-SETs
- Sort E: O(E Ig E)
- Second for loop: O(E) FIND-SETs and UNIONs
- O(V) +O (E $\alpha(V))+\mathbf{O}(E \lg E)$
- Since G is connected, $|E| \geq|V|-1 \Rightarrow O(E \alpha(V))+O(E \lg E)$
$-\alpha(|\mathrm{V}|)=\mathrm{O}(\lg \mathrm{V})=\mathrm{O}(\lg \mathrm{E})$
- Therefore, the total time is $\mathrm{O}(\mathrm{E} \lg \mathrm{E})$
$-|E| \leq|V|^{2} \Rightarrow \lg |E|=O(2 \lg V)=O(\lg V)$
- Therefore, O(E Ig V) time

Prim's algorithm

- Build a tree A (A is always a tree)
- Starts from an arbitrary "root" r.
- At each step, find a light edge crossing the cut ($V_{A^{\prime}} V$ V_{A}), where $V_{A}=$ vertices that A is incident on.
- Add this light edge to A.
- GREEDY CHOICE:
add min weight to A
- Use a priority queue Q to quickly find the light edge

Prim's Algorithm

MST-Prim(G, w, r)
for each $u \in G . V$
u.key $=\infty$
$\mathrm{u} . \pi=\mathrm{NIL}$
r.key $=0$
$\mathrm{Q}=\mathrm{G} . \mathrm{V}$
while (Q not empty)
$\mathrm{u}=$ ExtractMin (Q)
for each $v \in G . A d j[u]$

$$
\begin{gathered}
\text { if }(v \in Q \text { and } w(u, v)<v . k e y) \\
v . \pi=u \\
v . k e y=w(u, v)
\end{gathered}
$$

Prim's Algorithm: running time

- We can use the BUILD-MIN-HEAP procedure to perform the initialization in lines 1-5 in $O(V)$ time
- EXTRACT-MIN operation is called $|V|$ times, and each call takes $O(\lg V)$ time, the total time for all calls to EXTRACT-MIN is $O(V \lg V)$

Running time (cont'd)

- The for loop in lines $8-11$ is executed $O(E)$ times altogether, since the sum of the lengths of all adjacency lists is $2|\mathrm{E}|$.
- Lines 9-10 take constant time
- line 11 involves an implicit DECREASE-KEY operation on the min-heap, which takes $O(\lg V)$ time
- Thus, the total time for Prim's algorithm is $O(V)+O(V \lg V)+O(E \lg V)=O(E \lg V)$
- The same as Kruskal's algorithm

Single source shortest path problem

- Problem: given a weighted directed graph G, find the minimum-weight path from a given source vertex s to another vertex v
- "Shortest-path" -> Weight of the path is minimum
- Weight of a path is the sum of the weight of edges

Shortest path properties

- Optimal substructure property: any subpath of a shortest path is a shortest path
- In graphs with negative weight cycles, some shortest paths will not exist:
- Negative weight edges are ok for some cases
- Shortest paths cannot contain cycles

Initialization

- All the shortest-paths algorithms start with INIT-SINGLE-SOURCE

INIT-SINGLE-SOURCE(G, s)
for each vertex $v \in G . V$

$$
\begin{aligned}
& \text { v.d }=\infty \\
& \text { v. } \pi=\mathrm{NIL} \\
& s . d=0
\end{aligned}
$$

Relaxation: reach v by u

Relax (u, v, w) \{

$$
\begin{aligned}
& \text { if }(v . d>u \cdot d+w(u, v)) \\
& \quad v . d=u \cdot d+w(u, v) \\
& \quad v . \pi=u
\end{aligned}
$$

\}

Properties of shortest paths

- Triangle inequality

For all $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u)+w(u, v)$.
Proof Weight of shortest path $s \leadsto v$ is \leq weight of any path $s \leadsto v$. Path $s \leadsto u \rightarrow v$ is a path $s \leadsto v$, and if we use a shortest path $s \leadsto u$, its weight is $\delta(s, u)+w(u, v)$.

Upper-bound property

- Always have v.d $\geq \delta(s, v)$
- Once v.d = $\delta(s, v)$, it never changes
- Proof: Initially, it is true: v.d $=\infty$
- Supposed there is vertex such that v.d $<\delta(\mathrm{s}, \mathrm{v})$
- Without loss of generality, v is the first vertex for this happens
- Let u be the vertex that causes v.d to change
- Then v.d = u.d + w(u,v)
- So, v.d $<\delta(s, v) \leq \delta(s, u)+w(u, v)<u . d+w(u, v)$
- Then v.d < u.d + w(u,v)
- Contradict to v.d $=u . d+w(u, v)$

No-path property

- If $\delta(\mathrm{s}, \mathrm{v})=\infty$, then $\mathrm{v} . \mathrm{d}=\infty$ always
- Proof: v.d $\geq \delta(s, v)=\infty \rightarrow$ v.d $=\infty$

Convergence property

If $s \leadsto u \rightarrow v$ is a shortest path, $u . \mathrm{d}=\delta(s, u)$, and we call $\operatorname{RELAX}(u, v, w)$, then $\nu . \mathbf{d}=\delta(s, v)$ afterward.

Proof After relaxation:

$$
\begin{array}{rlrl}
v . \mathbf{d} & \leq u . \mathbf{d}+w(u, v) \quad \text { (RELAX code) } \\
& =\delta(s, u)+w(u, v) \\
& =\delta(s, v) & \\
& \text { (lemma-optimal substructure) }
\end{array}
$$

Since $v . d \geq \delta(s, v)$, must have $v . d=\delta(s, v)$.
When the "if" condition is true, $v . d=u . d+w(u, v)$ When the "if" condition is false, $v . d \leq u . d+w(u, v)$

Path relaxation property

Let $p=\left\langle\nu_{0}, \nu_{1}, \ldots, \nu_{k}\right\rangle$ be a shortest path from $s=\nu_{0}$ to ν_{k}. If we relax, in order, $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)$, even intermixed with other relaxations, then $v_{k} \cdot \mathbf{d}=\delta\left(s, v_{k}\right)$.

Proof Induction to show that $v_{i} \mathbf{~} \mathbf{d}=\delta\left(s, v_{i}\right)$ after $\left(v_{i-1}, v_{i}\right)$ is relaxed Basis: $i=0$. Initially, $v_{0} . \mathbf{d}=0=\delta\left(s, v_{0}\right)=\delta(s, s)$.
Inductive step: Assume $v_{i-1} \cdot \mathbf{d}=\delta\left(s, v_{i-1}\right)$. Relax $\left(v_{i-1}, v_{i}\right)$. By convengence property, $v_{i} . \mathbf{d}=\delta\left(s, v_{i}\right)$ afterward and $v_{i} . \mathrm{d}$ never changes.

Bellman-Ford algorithm

//Allows negative-weight edges
BellmanFord (G, w, s)
INIT-SINGLE-SOURCE(G, s)

$$
\text { for } i=1 \text { to }|G . V|-1
$$

for each edge (u, v) $\in G . E$ relaxing each edge Relax (u, v, w);
for each edge $(u, v) \in G . E\}$ Test for solution
if (v.d > u.d + w(u,v)) \} Under what condition do we get a solution? return "no solution";
$\operatorname{Relax}(u, v, w): i f(v . d>u . d+w(u, v))$

$$
\mathrm{v} \cdot \mathrm{~d}=\mathrm{u} \cdot \mathrm{~d}+\mathrm{w}(\mathrm{u}, \mathrm{v})
$$

Running time

- Initialization: $\Theta(\mathrm{V})$
- Line 2-4: $\Theta(E)$ * |V|-1 passes
- Line 5-7 : O(E)
- O(VE)

Dijkstra’s Algorithm

- Assumes no negative-weight edges.
- Maintains a vertex set S whose shortest path from s has been determined.
- Repeatedly selects u in V-S with minimum Shortest Path estimate (greedy choice).
- Store V-S in priority queue Q .

```
DIJKSTRA(G, w, s)
Initialize-SINGLE-SOURCE(G, s);
S = \varnothing;
Q = G.V;
while Q = \varnothing
    u = Extract-Min(Q);
    S = S }\cup{u}
    for each v }\in\mathrm{ G.Adj[u]
    Relax(u, v, w)
```


Dijkstra's Running Time

- Extract-Min executed |V| time
- Decrease-Key executed |E| time
- Time $=|V| T_{\text {Extract-Min }}+|E| T_{\text {Decrease-Key }}$
- Time $=\mathrm{O}(\mathrm{VlgV})+\mathrm{O}(\mathrm{ElgV})=\mathrm{O}(\mathrm{ElgV})$

Dynamic Programming (DP)

- Like divide-and-conquer, solve problem by combining the solutions to sub-problems.
- Divide-and-conquer vs. DP:
- divide-and-conquer: Independent sub-problems
- solve sub-problems independently and recursively, $(\rightarrow$ so same sub-problems solved repeatedly)
- DP: Sub-problems are dependent
- sub-problems share sub-sub-problems
- every sub-problem is solved just once
- solutions to sub-problems are stored in a table and used for solving higher level sub-problems.

Overview of DP

- Not a specific algorithm, but a technique (like divide-and-conquer).
- Doesn't really refer to computer programming
- Application domain of DP
- Optimization problem: find a solution with the optimal (maximum or minimum) value

Matrix-chain multiplication problem

- Given a chain $\left\langle A_{1}, A_{2}, \ldots, A_{n}\right\rangle$ of n matrices
- where for $i=1, \ldots, n$, matrix A_{i} has dimension $p_{i-1} \times p_{i}$
- fully parenthesize the product $A_{1} A_{2} \cdots A_{n}$ in a way that minimizes the number of scalar multiplications.
- What is the minimum number of multiplications required to compute $A_{1} \cdot A_{2} \cdot \ldots \cdot A_{n}$?
- What order of matrix multiplications achieves this minimum? This is our goal !

Step 1: Find the structure of an optimal parenthesization

- Finding the optimal substructure and using it to construct an optimal solution to the problem based on optimal solutions to subproblems.

Both must be Optimal for sub-chain
 $\left(\left(A_{1} A_{2} \cdots A_{\mathrm{k}}\right)\left(A_{\mathrm{k}+1} A_{\mathrm{k}+2} \cdots A_{\mathrm{n}}\right)\right)$
 Then combine them for the original problem

- The key is to find k; then, we can build the global optimal solution

Step 2: A recursive solution to define the cost of an optimal solution

- Define $m[i, j]=$ the minimum number of multiplications needed to compute the matrix $A_{i . j}=A_{i} A_{i+1} \cdots A_{j}$
- Goal: to compute $m[1, n]$
- Basis: $\mathrm{m}(i, i)=0$
- Single matrix, no computation
- Recursion: How to define $m[i, j]$ recursively?
$-\left(\left(A_{i} A_{2} \cdots A_{k}\right)\left(A_{k+1} A_{k+2} \cdots A_{j}\right)\right)$

Step2: Defining $m[i, j]$ Recursively

- Consider all possible ways to split A_{i} through A_{j} into two pieces: $\left(A_{i} \cdot \ldots \cdot A_{k}\right) \cdot\left(A_{k+1} \cdot \ldots \cdot A_{j}\right)$
- Compare the costs of all these splits:
- best case cost for computing the product of the two pieces
- plus the cost of multiplying the two products
- Take the best one
$-m[i, j]=\min _{k}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\}$

Identify Order for Solving Subproblems

- Solve the subproblems (i.e., fill in the table entries) along the diagonal

	1	2	3	4	5
1	0				
2	n / a	0			
3	n / a	n / a	0		
4	n / a	n / a	n / a	0	
5	n / a	n / a	n / a	n / a	0

An example

	1	2	3	4
1	0	1200		
A1 is 30×1				
A3 is 40×10				
A4 is 10×25				
$\mathrm{p} 0=30, \mathrm{p} 1=1$				
$\mathrm{p} 2=40, \mathrm{p} 3=10$				

$$
\begin{aligned}
& m[1,2]=A 1 A 2: 30 \times 1 \times 40=1200, \\
& m[2,3]=A 2 A 3: 1 \times 40 \times 10=400, \\
& m[3,4]=A 3 A 4: 40 \times 10 \times 25=10000
\end{aligned}
$$

An example (cont'd)

	1	2	3	4
1	0	1200	700	
2	n/a	0	400	
3	n/a	n/a	0	10000
4	n/a	n/a	n/a	0

A1 is 30×1
A2 is 1×40
A3 is 40×10
A4 is 10×25
$\mathrm{p} 0=30, \mathrm{p} 1=1$
$\mathrm{p} 2=40, \mathrm{p} 3=10$
$\mathrm{p} 4=25$

$$
m[i, j]=\min _{k}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\}
$$

$\mathrm{m}[1,3]: i=1, j=3, k=1,2$
$=\min \left\{m[1,1]+m[2,3]+p 0^{*} p 1 * p 3, m[1,2]+m[3,3]+p 0 * p 2 * p 3\right\}$
$=\min \left\{0+400+30^{*} 1 * 10,1200+0+30 * 40 * 10\right\}=700$

An example (cont'd)

	1	2	3	4
1	0	1200	700	
2	n/a	0	400	650
3	n/a	n/a	0	10000
4	n/a	n/a	n/a	0

A1 is 30×1
A2 is 1×40
A3 is 40×10
A4 is 10×25
$\mathrm{p} 0=30, \mathrm{p} 1=1$
$\mathrm{p} 2=40, \mathrm{p} 3=10$
$\mathrm{p} 4=25$

$$
m[i, j]=\min _{k}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\}
$$

$\mathrm{m}[2,4]: i=2, j=4, k=2,3$
$=\min \left\{m[2,2]+m[3,4]+p 1^{*} p 2 * p 4, m[2,3]+m[4,4]+\mathrm{p} 1^{*} \mathrm{p} 3 * \mathrm{p} 4\right\}$
$=\min \left\{0+10000+1^{*} 40^{*} 25,400+0+1^{*} 10^{*} 25\right\}=650$

An example (cont'd)

	1	2	3	4
1	0	1200	700	1400
2	n / a	0	400	650
3	n/a	n/a	0	10000
4	n/a	n / a	n / a	0

A 1 is 30×1
A2 is 1×40
A3 is 40×10
A4 is 10×25
$\mathrm{p} 0=30, \mathrm{p} 1=1$
p2 $=40, \mathrm{p} 3=10$
$\mathrm{p} 4=25$

$m[i, j]=\min _{k}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\}$

$\mathrm{m}[1,4]: i=1, j=4, k=1,2,3$
$=\min \left\{\mathrm{m}[1,1]+\mathrm{m}[2,4]+\mathrm{p} 0^{*} \mathrm{p} 1 * \mathrm{p} 4, \mathrm{~m}[1,2]+\mathrm{m}[3,4]+\mathrm{p} 0 * \mathrm{p} 2 * \mathrm{p} 4\right.$, $\mathrm{m}[1,3]+\mathrm{m}[4,4]+\mathrm{p} 0 * \mathrm{p} 3 * \mathrm{p} 4\}$
$=\min \{0+650+30 * 1 * 25,1200+10000+30 * 40 * 25,700+0+30 * 10 * 25\}$
$=1400$

Step 3: Keeping Track of the Order

- We know the cost of the cheapest order, but what is that cheapest order?
- Use another array s[]
- update it when computing the minimum cost in the inner loop
- After $m[]$ and $s[]$ are done, we call a recursive algorithm on $s[]$ to print out the actual order

An example

$$
\begin{aligned}
& m[1,2]=A 1 A 2: 30 \times 1 \times 40=1200, s[1,2]=1 \\
& m[2,3]=A 2 A 3: 1 \times 40 \times 10=400, s[2,3]=2 \\
& m[3,4]=A 3 A 4: 40 \times 10 \times 25=10000, s[3,4]=3
\end{aligned}
$$

An example (cont'd)

	1	2	3	4
1	0	1	1	
2	n/a	0	2	
3	n/a	n/a	0	3
4	n/a	n/a	n/a	0

A1 is 30×1
A2 is 1×40
A3 is 40×10
A4 is 10×25
$\mathrm{p} 0=30, \mathrm{p} 1=1$
$\mathrm{p} 2=40, \mathrm{p} 3=10$
$\mathrm{p} 4=25$
$\mathrm{m}[1,3]: i=1, j=3, k=1,2$
$=\min \left\{\mathrm{m}[1,1]+\mathrm{m}[2,3]+\mathrm{p} 0^{*} \mathrm{p} 1^{*} \mathrm{p} 3, \mathrm{~m}[1,2]+\mathrm{m}[3,3]+\mathrm{p} 0 * \mathrm{p} 2 * \mathrm{p} 3\right\}$
$=\min \{0+400+30 * 1 * 10,1200+0+30 * 40 * 10\}=700$ $m[1,3]$ is the minimum value when $k=1$, so $s[1,3]=1$

An example (cont'd)

	1	2	3	4
1	0	1	1	
2	n/a	0	2	3
3	n/a	n/a	0	3
4	n/a	n/a	n/a	0

A1 is 30×1
A2 is 1×40
A3 is 40×10
A4 is 10×25
$\mathrm{p} 0=30, \mathrm{p} 1=1$
$\mathrm{p} 2=40, \mathrm{p} 3=10$
$\mathrm{p} 4=25$
$\mathrm{m}[2,4]: i=2, j=4, k=2,3$
$=\min \left\{m[2,2]+m[3,4]+p 1 * p 2 * p 4, m[2,3]+m[4,4]+p 1^{*} p 3 * p 4\right\}$
$=\min \left\{0+10000+1^{*} 40 * 25,400+0+1^{*} 10 * 25\right\}=650$
$m[2,4]$ is the minimum value when $k=3$, so $s[2,4]=3$

An example (cont'd)

	1	2	3	4
1	0	1	1	1
2	n / a	0	2	3
3	n / a	n / a	0	3
4	n / a	n / a	n / a	0

A 1 is 30×1
A2 is 1×40
A3 is 40×10
A4 is 10×25
$\mathrm{p} 0=30, \mathrm{p} 1=1$
p2 $=40, \mathrm{p} 3=10$
p4 $=25$
$\mathrm{m}[1,4]: i=1, j=4, k=1,2,3$
$=\min \left\{\mathrm{m}[1,1]+\mathrm{m}[2,4]+\mathrm{p} 0^{*} \mathrm{p} 1 * \mathrm{p} 4, \mathrm{~m}[1,2]+\mathrm{m}[3,4]+\mathrm{p} 0 * \mathrm{p} 2 * \mathrm{p} 4\right.$,

$$
\mathrm{m}[1,3]+\mathrm{m}[4,4]+\mathrm{p} 0 * \mathrm{p} 3 * \mathrm{p} 4\}
$$

$=\min \{0+650+30 * 1 * 25,1200+10000+30 * 40 * 25,700+0+30 * 10 * 25\}$
$=1400$
$\mathrm{m}[1,4]$ is the minimum value when $\mathrm{k}=1$, so $\mathrm{s}[1,4]=1$

Step 4: Using S to Print Best Ordering (cont'd)

	1	2	3	4
1	0	1	1	1
2	n / a	0	2	3
3	n / a	n / a	0	3
4	n / a	n / a	n / a	0

A1 A2 A3 A4
$\mathrm{s}[1,4]=1->\mathrm{A} 1(\mathrm{~A} 2 \mathrm{~A} 3 \mathrm{~A} 4)$
$\mathrm{s}[2,4]=3->(\mathrm{A} 2 \mathrm{~A} 3) \mathrm{A} 4$
A1 (A2 A3 A4) -> A1 ((A2 A3) A4)

Step 3: Computing the optimal costs

MATRIX-CHAIN-ORDER(p)
$1 \quad n=$ length $[p]-1$
2 Let m [1..n, 1..n] and $s[1 . . n-1,2 . . n]$ be new tables
3 for $i=1$ to n
$4 \quad m[i, i]=0$
5 for $l=2$ to n
$6 \quad$ for $i=1$ to $(n-l+1)$
$j=i+l-1$
$m[i, j]=\infty$

$$
\text { for } k=i \text { to }(j-1)
$$

$$
q=m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}
$$

$$
\text { if } q<m[i, j]
$$

$$
m[i, j]=q
$$

14 return m and s

$$
s[i, j]=k
$$

Complexity: $O\left(n^{3}\right)$ Space: $\Theta\left(n^{2}\right)$

Step 4: Using S to Print Best Ordering

$\bigcirc s[i, j]$ is the split position for $\mathrm{A}_{i} \mathrm{~A}_{i+1} \ldots \mathrm{~A}_{j} \rightarrow \mathrm{~A}_{i \ldots} \ldots \mathrm{~A}_{s[i, j]}$ and $\mathrm{A}_{s[i, j]+1} \ldots \mathrm{~A}_{j}$
© Call Print-Optimal-PARENS(s, 1, n)
Print-Optimal-PARENS (s, i, j)
if ($i==j$) then print " A " + $i \quad / /+$ is string concatenation else
print "("
Print-Optimal-PARENS ($s, i, s[i, j]$)
Print-Optimal-PARENS ($s, s[i, j]+1, j$)
Print ")"

16.3 Elements of dynamic programming

- Optimal substructure
- a problem exhibits optimal substructure if an optimal solution to the problem contains within its optimal solutions to subproblems.
- Example: Matrix-multiplication problem
- Overlapping subproblems
- The space of subproblems is "small" in that a recursive algorithm for the problem solves the same subproblems over and over.
- Total number of distinct subproblems is typically polynomial in input size
- Reconstructing an optimal solution

Optimal structure may not exist

- We cannot assume it when it is not there
- Consider the following two problems. in which we are given a directed graph $G=(V, E)$ and vertices $u, v \in V$
- P1: Unweighted shortest path (USP)
- Find a path from u to v consisting of the fewest edges. Good for Dynamic programming.
- P2: Unweighted longest simple path (ULSP)
- A path is simple if all vertices in the path are distinct
- Find a simple path from u to v consisting of the most edges. Not good for Dynamic programming.

Overlapping Subproblems

- Second ingredient: an optimization problem must have for DP is that the space of subproblems must be "small", in a sense that
- A recursive algorithm solves the same subproblems over and over, rather than generating new subproblems.
- The total number of distinct subproblems is polynomial in the input size
- DP algorithms use a table to store the solutions to subproblems and look up the table in a constant time

Overlapping Subproblems (Cont'd)

- In contrast, a problem for which a divide-andconquer approach is suitable when the recursive steps always generate new problems at each step of the recursion.
- Examples: Mergesort and Quicksort.
- Sorting on smaller and smaller arrays (each recursion step work on a different subarray)

A Recursive Algorithm for Matrix-Chain Multiplication
RECURSIVE-MATRIX-CHAIN (p, i, j), called with $(p, 1, n)$

1. if $(i==j)$ then return 0
2. $m[i, j]=\infty$
3. \quad for $k=i$ to $(j-1)$
4. $q=$ RECURSIVE-MATRIX-CHAIN (p, i, k)

$$
+ \text { RECURSIVE-MATRIX-CHAIN }(p, k+1, j)+p_{i-1} p_{k} p_{j}
$$

5. if $(q<m[i, j])$ then $m[i, j]=q$
6. return $m[i, j]$

The running time of the algorithm is $O\left(2^{n}\right)$.

The recursion tree

for $k=i$ to ($j-1$)

$$
\begin{aligned}
q & =\text { RECURSIVE-MATRIX-CHAIN }(p, i, k) \\
& +\operatorname{RECURSIVE-MATRIX-CHAIN}(p, k+1, j)+p_{i-1} p_{k} p_{j}
\end{aligned}
$$

RECURSIVE-MATRIX-CHAIN $(p, 1,4)$

$$
\mathrm{i}=1, \mathrm{j}=4, \mathrm{k}=1,2,3(\mathrm{i} \text { to } \mathrm{j}-1)
$$

needs to solve $(1, k)(k+1,4)$
$\mathrm{k}=1->(1,1)(2,4)$
$\mathrm{k}=2->(1,2)(3,4)$
$\mathrm{K}=3->(1,3)(4,4)$

Recursion tree of RECURSIVE-MATRIX-

$\operatorname{CHAIN}(p, 1,4)$

. This divide-and-conquer recursive algorithm solves the overlapping problems over and over.

- DP solves the same subproblems only once
- The computations in darker color are replaced by table loop up in MEMOIZED-MATRIX-CHAIN(p,1,4).
© The divide-and-conquer is better for the problem which generates brand-new problems at each step of recursion.

General idea of Memoization

- A variation of DP
- Keep the same efficiency as DP
- But in a top-down manner.
- Idea:
- When a subproblem is first encountered, its solution needs to be solved, and then is stored in the corresponding entry of the table.
- If the subproblem is encountered again in the future, just look up the table to take the value.

Memoized Matrix Chain

```
```

MEmoized-MATRIX-CHAIN(}p\mathrm{)

```
```

MEmoized-MATRIX-CHAIN(}p\mathrm{)
1 n}\leftarrowlength[p]-
1 n}\leftarrowlength[p]-
2 for }i\leftarrow1\mathrm{ to }
2 for }i\leftarrow1\mathrm{ to }
3 do for }j\leftarrowi\mathrm{ to }
3 do for }j\leftarrowi\mathrm{ to }
4 do m[i,j]}\leftarrow
4 do m[i,j]}\leftarrow
5 return LOOKUP-CHAIN (p , 1 , n)

```
```

5 return LOOKUP-CHAIN (p , 1 , n)

```
```

LOOKUP-CHAIN(p,i,j)

1. if $m[i, j]<\infty$ then return $m[i, j]$
2. if ($i==j$) then $m[i, j]=0$
3. else for $k=i$ to $j-1$
4. $\quad q=$ LOOKUP-CHAIN $(p, i, k)+$
5.
6.

LOOKUP-CHAIN $(p, k+1, j)+p_{i-1} p_{k} p_{j}$
if $(q<m[i, j])$ then $m[i, j]=q$
7. return $m[i, j]$

DP VS. Memoization

- MCM can be solved by DP or Memoized algorithm, both in $O\left(n^{3}\right)$
- Total $\Theta\left(n^{2}\right)$ subproblems, with $O(n)$ for each.
- If all subproblems must be solved at least once, DP is better by a constant factor due to no recursive involvement as in memorized algorithm
- If some subproblems may not need to be solved, Memoized algorithm may be more efficient
- since it only solve these subproblems which are definitely required.

Longest Common Subsequence (LCS)

- DNA analysis to compare two DNA strings
- DNA string: a sequence of symbols A, C, G, T
- $\mathrm{S}=A C C G G T C G A G C T T C G A A T$
- Subsequence of X is X with some symbols left out
$-Z=$ CGTC is a subsequence of $X=A C G C T A C$
- Common subsequence Z of X and Y : a subsequence of X and also a subsequence of Y
$-Z=$ CGA is a common subsequence of $X=A C G C T A C$ and $Y=$ CTGACA
- Longest Common Subsequence (LCS): the longest one of common subsequences
$-Z^{\prime}=$ CGCA is the LCS of the above X and Y
- LCS problem: given $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$, find their LCS

LCS DP step 2: Recursive Solution

- What the theorem says:
- If $x_{m}==y_{n}$, find LCS of X_{m-1} and Y_{n-1}, then append x_{m}
- If $x_{m} \neq y_{n}$, find (1) the LCS of X_{m-1} and Y_{n} and (2) the LCS of X_{m} and Y_{n-1}; then, take which one is longer
- Overlapping substructure:
- Both LCS of X_{m-1} and Y_{n} and LCS of X_{m} and Y_{n-1} will need to solve LCS of X_{m-1} and Y_{n-1} first
- $c[i, j]$ is the length of LCS of X_{i} and Y_{j}

$$
c[i, j]= \begin{cases}0 & \text { if } i=0, \text { or } j=0 \\ c[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j} \\ \max \{c[i-1, j], c[i, j-1]\} & \text { if } i, j>0 \text { and } x_{i} \neq y_{j}\end{cases}
$$

LCS DP step 3: Computing the Length of LCS

$c[i, j]= \begin{cases}0 & \text { if } i=0, \text { or } j=0 \\ c[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j} \\ \max \{c[i-1, j], c[i, j-1]\} & \text { if } i, j>0 \text { and } x_{i} \neq y_{j}\end{cases}$

- $c[0 . . m, 0 . . n]$, where $c[i, j]$ is defined as above.
$-c[m, n]$ is the answer (length of LCS)
- $b[1 . . m, 1 . . n]$, where $b[i, j]$ points to the table entry corresponding to the optimal subproblem solution chosen when computing $c[i, j]$.
- From $b[m, n]$ backward to find the LCS.

LCS DP Algorithm

```
LCS-LENGTH \((X, Y)\)
    \(1 \quad m \leftarrow\) length \([X]\)
    \(2 n \leftarrow \operatorname{length}[Y]\)
    3 for \(i \leftarrow 1\) to \(m\)
    4 do \(c[i, 0] \leftarrow 0\)
    5 for \(j \leftarrow 0\) to \(n\)
        do \(c[0, j] \leftarrow 0\)
        for \(i \leftarrow 1\) to \(m\)
        do for \(j \leftarrow 1\) to \(n\)
        do if \(x_{i}=y_{j}\)
        then \(\begin{aligned} c[i, j] & \leftarrow c[i-1, j-1]+1 \\ b[i, j] & \leftarrow \text { " } \pi\end{aligned}\)
        else if \(c[i-1, j] \geq c[i, j-1]\)
        then \(c[i, j] \leftarrow c[i-1, j]\)
                            \(b[i, j] \leftarrow " \uparrow "\)
    else \(c[i, j] \leftarrow c[i, j-1]\)
    \(b[i, j] \leftarrow " \leftarrow "\)
```

17 return c and b

$\mathrm{X}=\mathrm{ABCB} ; \mathrm{m}=|\mathrm{X}|=4$ $\mathrm{Y}=\mathrm{BDCAB} ; \mathrm{n}=|\mathrm{Y}|=5$
Allocate array c[5,6]

			S					ABCB
	j	0	1	2	3	4	5	
i		Yj	B	D	C	A	B	
0	Xi	0	0	0	0	0	0	
1	A	0						
2	B	0						
3	C	0						
4	B	0						

for $\mathrm{i}=1$ to $\mathrm{m} \quad \mathrm{c}[\mathrm{i}, 0]=0$
for $\mathrm{j}=1$ to $\mathrm{n} \quad \mathrm{c}[0, \mathrm{j}]=0$

> LCS Example (2) ABCB BDCAB
> i
> 0

$$
\begin{aligned}
& \text { if }(\mathrm{Xi}==\mathrm{Yj}) \\
& c[i, j]=\mathrm{c}[\mathrm{i}-1, \mathrm{j}-1]+1 \\
& \text { else } \mathrm{c}[\mathrm{i}, \mathrm{j}]=\max (\mathrm{c}[\mathrm{i}-1, \mathrm{j}], \mathrm{c}[\mathrm{i}, \mathrm{j}-1])
\end{aligned}
$$

LCS Example (3)

							BDCAB	
	j		1	2	C	A		
i		Yj	B	D	C	A	B	
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0			
2	B	0						
3	C	0						
4	B	0						

$$
\begin{aligned}
& \text { if }(\mathrm{Xi}==\mathrm{Yj}) \\
& c[i, j]=\mathrm{c}[\mathrm{i}-1, \mathrm{j}-1]+1 \\
& \text { else } \mathrm{c}[\mathrm{i}, \mathrm{j}]=\max (\mathrm{c}[\mathrm{i}-1, \mathrm{j}], \mathrm{c}[\mathrm{i}, \mathrm{j}-1])
\end{aligned}
$$

LCS Example (4) ABCB

$$
\begin{aligned}
& \text { if }(\mathrm{Xi}==\mathrm{Yj}) \\
& c \mathrm{c} \mathrm{i}, \mathrm{j}]=\mathrm{c}[\mathrm{i}-1, \mathrm{j}-1]+1 \\
& \text { else } \mathrm{c}[\mathrm{i}, \mathrm{j}]=\max (\mathrm{c}[\mathrm{i}-1, \mathrm{j}], \mathrm{c}[\mathrm{i}, \mathrm{j}-1])
\end{aligned}
$$

LCS Example (5)
ABCB BDCAB i

if $(\mathrm{Xi}==\mathrm{Yj})$

$$
c[i, j]=c[i-1, j-1]+1
$$

else $c[i, j]=\max (c[i-1, j], c[i, j-1])$

LCS Example (6) ABCB

	j	0	1	2	3	4		BDCAB
		Yj	B	D	C	A	B	
0	Xi	0	$\underbrace{}_{0}$	0	0	0	0	
1	A	0	0	0	0	1	1	
2	B	0	1					
3	C	0						
4	B	0						

$$
\begin{aligned}
& \text { if }(\mathrm{Xi}==\mathrm{Yj}) \\
& \quad \mathrm{c}[\mathrm{i}, \mathrm{j}]=\mathrm{c}[\mathrm{i}-1, \mathrm{j}-1]+1 \\
& \text { else } \mathrm{c}[\mathrm{i}, \mathrm{j}]=\max (\mathrm{c}[\mathrm{i}-1, \mathrm{j}], \mathrm{c}[\mathrm{i}, \mathrm{j}-1])
\end{aligned}
$$

LCS Example (7)

							${ }_{5} \mathrm{BDCAB}$	
i	j		B	D	${ }^{3}$	A	B	
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	B	0	1	1	1	1		
3	C	0						
4	B	0						

$$
\begin{aligned}
& \text { if }(\mathrm{Xi}==\mathrm{Yj}) \\
& \quad \mathrm{c}[\mathrm{i}, \mathrm{j}]=\mathrm{c}[\mathrm{i}-1, \mathrm{j}-1]+1 \\
& \text { else } c[\mathrm{i}, \mathrm{j}]=\max (\mathrm{c}[\mathrm{i}-1, \mathrm{j}], \mathrm{c}[\mathrm{i}, \mathrm{j}-1])
\end{aligned}
$$

$$
\begin{aligned}
& \text { if }(\mathrm{Xi}==\mathrm{Yj}) \\
& c \mathrm{c} \mathrm{i}, \mathrm{j}]=\mathrm{c}[\mathrm{i}-1, \mathrm{j}-1]+1 \\
& \text { else } \mathrm{c}[\mathrm{i}, \mathrm{j}]=\max (\mathrm{c}[\mathrm{i}-1, \mathrm{j}], \mathrm{c}[\mathrm{i}, \mathrm{j}-1])
\end{aligned}
$$

LCS Example (10)
ABCB BDCAB
i

1
2
3
4

$$
\begin{aligned}
& \text { if }(\mathrm{Xi}==\mathrm{Yj}) \\
& c[\mathrm{i}, \mathrm{j}]=\mathrm{c}[\mathrm{i}-1, \mathrm{j}-1]+1 \\
& \text { else } \mathrm{c}[\mathrm{i}, \mathrm{j}]=\max (\mathrm{c}[\mathrm{i}-1, \mathrm{j}], \mathrm{c}[\mathrm{i}, \mathrm{j}-1])
\end{aligned}
$$

$$
\begin{aligned}
& \text { if }(\mathrm{Xi}==\mathrm{Yj}) \\
& \quad \mathrm{c}[\mathrm{i}, \mathrm{j}]=\mathrm{c}[\mathrm{i}-1, \mathrm{j}-1]+1 \\
& \text { else } \mathrm{c}[\mathrm{i}, \mathrm{j}]=\max (\mathrm{c}[\mathrm{i}-1, \mathrm{j}], \mathrm{c}[\mathrm{i}, \mathrm{j}-1])
\end{aligned}
$$

$$
\begin{aligned}
& \text { if }(\mathrm{Xi}==\mathrm{Yj}) \\
& c[\mathrm{i}, \mathrm{j}]=\mathrm{c}[\mathrm{i}-1, \mathrm{j}-1]+1 \\
& \text { else } \mathrm{c}[\mathrm{i}, \mathrm{j}]=\max (\mathrm{c}[\mathrm{i}-1, \mathrm{j}], \mathrm{c}[\mathrm{i}, \mathrm{j}-1])
\end{aligned}
$$

$$
\begin{aligned}
& \text { if }(\mathrm{Xi}==\mathrm{Yj}) \\
& c \mathrm{c} \mathrm{i}, \mathrm{j}]=\mathrm{c}[\mathrm{i}-1, \mathrm{j}-1]+1 \\
& \text { else } \mathrm{c}[\mathrm{i}, \mathrm{j}]=\max (\mathrm{c}[\mathrm{i}-1, \mathrm{j}], \mathrm{c}[\mathrm{i}, \mathrm{j}-1])
\end{aligned}
$$

			Ex		le			
	j	0	1	2	3	4		
i		Yj	B	D	C	A		
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1		
2	B	0	1	1	1	1	2	
3	C	0				2	2	
4	(B)	0	1	\downarrow		${ }_{2}$		

if ($\mathrm{Xi}==\mathrm{Yj}$)

$$
c[i, j]=c[i-1, j-1]+1
$$

else $c[i, j]=\max (c[i-1, j], c[i, j-1])$

i	LCS Example (15)							$\begin{aligned} & \mathrm{ABCB} \\ & \mathrm{BDCAB} \end{aligned}$
	j	0		2	3	4	5	
		Yj	B	D	C	A	B	
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	B	0	1	1	1	1	2	
3	C	0	1	1	2	2	2	
4	B	0	1	1	2	2		

$$
\begin{aligned}
& \text { if }(\mathrm{Xi}==\mathrm{Yj}) \\
& \quad \mathrm{c}[\mathrm{i}, \mathrm{j}]=\mathrm{c}[\mathrm{i}-1, \mathrm{j}-1]+1 \\
& \text { else } \mathrm{c}[\mathrm{i}, \mathrm{j}]=\max (\mathrm{c}[\mathrm{i}-1, \mathrm{j}], \mathrm{c}[\mathrm{i}, \mathrm{j}-1])
\end{aligned}
$$

	j	0		2	3	4	5	6
i		y_{j}		D	C	A	B	A
0	x_{i}	0	0	0	0	0	0	0
1	A	0	\uparrow 0	\uparrow 0	\uparrow	π_{1}	$\leftarrow 1$	\nwarrow_{1}
2	B	0		-1	$\leftarrow 1$	$\begin{aligned} & \uparrow \\ & 1 \\ & 1 \end{aligned}$	\nwarrow_{2}	$\leftarrow 2$
3	C	0	\uparrow 1	\uparrow	2	$\leftarrow 2$	$\begin{aligned} & \uparrow \\ & 2 \end{aligned}$	\uparrow
4	B	0		$\begin{aligned} & \uparrow \\ & 1 \end{aligned}$	\uparrow	$\begin{aligned} & \uparrow \\ & \uparrow \\ & \hline \end{aligned}$	3	$\leftarrow 3$
5	D	0	\uparrow	2	\uparrow 2	$\begin{aligned} & \uparrow \\ & 2 \\ & 2 \end{aligned}$	\uparrow	个 3
6	A	0	$\begin{aligned} & 1 \\ & \uparrow \\ & 1 \end{aligned}$	¢ 2	\uparrow	3	3	4
7	B	0		\uparrow 2	\uparrow	$\begin{aligned} & \uparrow \\ & 3 \\ & \hline \end{aligned}$	${ }_{4}$	\uparrow 4

Figure 15.8 The c and b tables computed by LCS-LENGTH on the sequences $X=\langle A, B, C, B$, $D, A, B\rangle$ and $Y=\langle B, D, C, A, B, A\rangle$. The square in row i and column j contains the value of $c[i, j]$ and the appropriate arrow for the value of $b[i, j]$. The entry 4 in $c[7,6]$-the lower right-hand corner of the table-is the length of an $\operatorname{LCS}\langle B, C, B, A\rangle$ of X and Y. For $i, j>0$, entry $c[i, j]$ depends only on whether $x_{i}=y_{j}$ and the values in entries $c[i-1, j], c[i, j-1]$, and $c[i-1, j-1]$, which are computed before $c[i, j]$. To reconstruct the elements of an LCS, follow the $b[i, j]$ arrows from the lower right-hand corner; the path is shaded. Each " \nwarrow " on the path corresponds to an entry (highlighted) for which $x_{i}=y_{j}$ is a member of an LCS.

Greedy Algorithms

- We have learned two design techniques
- Divide-and-conquer
- Dynamic Programming
- Now, the third \rightarrow Greedy Algorithms
- Optimization often goes through some choices
- Make local best choices \rightarrow hope to achieve global optimization
- Many times, this works; Other times, does NOT!
- Minimum spanning tree algorithms
- We must carefully examine if we can apply this method

An activity-selection problem

- Activity set $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
- n activities wish to use a single resource
- Each activity a_{i} has a start time s_{i} and a finish time f_{i}, where $0 \leq s_{i}<f_{i}<\infty$
- If selected, activity a_{i} take place during the half-open time interval $\left[s_{i}, f_{i}\right)$
- Activities a_{i} and a_{j} are compatible if the intervals [s_{i}, f_{i}) and $\left[s_{j}, f_{j}\right.$) do not overlap
$-a_{i}$ and a_{j} are compatible if $s_{i} \geq f_{j}$ or $s_{j} \geq f_{i}$

The greedy choice

- Intuition: Choose an activity that leaves the resource available for as many other activities as possible
- It must finish as early as possible: greedy
- Let $S_{k}=\left\{a_{i} \in S: s_{i}>=f_{k}\right\}$ be the set of activities that start after activity a_{k} finishes
- If we make the greedy choice of activity a_{l} (i.e., a_{l} is the first activity to finish), then S_{1} remains as the only subproblem to solve.
$\cdot a_{1}+S_{1}$, if S_{1} is the optimal solution for others $\rightarrow a_{1}$ must be in the optimal solution
- Is this correct?

Optimal substructure

- $S_{i j}$ is the subset of activities that can
- start after activity a_{i} finishes
- and finish before activity a_{j} starts
$-S_{i j}=\left\{a_{k} \in S: f_{i} \leq s_{k}<f_{k} \leq s_{j}\right\}$
$-f_{0}=0$ and $s_{n+1}=\infty$. Then $S=S_{0, n+1}$, and the ranges for i and j are given by $0 \leq i, j \leq n+1$
- Define $A_{i j}$ as the maximum set in $\mathrm{S}_{i j}$
- Selecting a_{k} in the optimal solutions generates two subproblems
$-A_{i j}=A_{i k} \cup\left\{a_{k}\right\} \cup A_{k j}$

$-\left|A_{i j}\right|=\left|A_{i k}\right|+1+\left|A_{k j}\right|$

Converting a dynamic-programming solution to a greedy solution

- Theorem 16.1 Consider any nonempty subproblem S_{k}, and let a_{m} be the activity in S_{k} with the earliest finish time: $f_{m}=\min$ $\left\{f_{x}: a_{x} \in S_{k}\right\}$. Then a_{m} is used in some maximum-size subset of mutually compatible activities of S_{k}
- Let A_{k} be the maximum-size subset of mutually compatible activities in S_{k}
- Let a_{j} be the activity in A_{k} with the earliest finish time
- If $a_{j}==a_{m}$, we are done.
- Otherwise, $A_{k}^{\prime}=\mathrm{A}_{k}-\left\{a_{j}\right\} \cup\left\{a_{m}\right\}$
- We have new A_{k} with a_{m}

An iterative greedy algorithm

Greedy-Activity-Selector(s, f)
$1 n=$ s.length
$2 A=\left\{a_{1}\right\}$
$3 \mathrm{k}=1$
4 for $m=2$ to n
5 if $s_{m} \geq f_{k}$
$6 \quad$ then $A=A \cup\left\{a_{m}\right\}$

$$
k=m
$$

8 return A

Ingredients of Greedy ALs

- Greedy-choice property: A global optimal solution can be achieved by making a local optimal choice.
- Without considering results of subproblems
- Optimal substructure: An optimal solution to the problem within its optimal solution to subproblem

The End

